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Using particle tracking microrheology, we studied the glass transition in dense suspensions of thermosensi-
tive microgel particles. These suspensions can be tuned reversibly between the glass state at low temperature
and the liquid state at high temperature. In the glass state, the ensemble averaged mean squared displacements
�MSDs� of added fluorescent tracer particles depend on the age of the suspension. We also determine the local
viscoelastic moduli, G� and G�, from the MSDs using the Generalized Stokes-Einstein Relation and compare
them to the bulk moduli, measured using conventional rheometry. With particle tracking, one probes the
viscoelastic moduli in a lower frequency range than with macrorheology, which makes it possible to determine
the mean relaxation time that is inaccessible with macrorheology. In the glass state, the mean relaxation time
increases linearly with the age of the sample and the short time particle displacement distributions are non-
Gaussian, indicating inhomogeneity of the system. The observed difference between conventional and mi-
crorheology is explained quantitatively assuming that the tracer particles are surrounded by a viscoelastic
liquid shell, different from the bulk.
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I. INTRODUCTION

Glass transitions �1�, aging �2–6�, dynamic heterogeneity
�7�, and slow relaxation processes �8� are topics of interest in
the study of soft glassy materials. These topics are mostly
studied using colloidal systems due to their larger size, which
inherently provides longer time scales than atomic and mo-
lecular systems. Moreover, the chemical and physical prop-
erties of colloidal particles can be flexibly manipulated �9�.

For a colloidal hard sphere system, a glass transition is
normally achieved by increasing its volume fraction via the
mass concentration of the hard colloidal particles. As the
system approaches the glass transition, its structural length
scale �cluster size� increases and this increase is responsible
for slowing down the dynamics �1�. This slowing down has
been observed with light scattering experiments on colloidal
hard sphere dispersions, since a second plateau in the inten-
sity correlation occurs when the glass transition is ap-
proached. It is well described by the mode coupling theory
�10�. The mode coupling theory has also been applied suc-
cessfully to describe quantitatively the flow curve of ther-
mosensitive microgel particle suspensions as they approach
the glass transition �11� and the viscoelastic moduli of a
dense hard-sphere suspension as function of the applied fre-
quency and strain amplitude �12�. However, to account for
the influence of aging on the rheological properties, this
mode coupling theory is still under development �13�. On the
other hand, the phenomenological soft glassy rheology
model predicts not only the rheological behavior as the sys-
tem approaches the glass transition but also deep in the
glassy state where the suspension shows aging �14–16�.

Although the glass transition in colloidal hard sphere sus-
pensions was widely studied �17–21�, the dynamic behavior
of soft colloidal systems around the glass transition is hardly
investigated. Examples of model soft systems are star poly-

mers �22� and polyelectrolyte microgels �23�. In this study,
we use thermosensitive core-shell microgel particles, in
which the core consists of thermosensitive poly-N-isopropyl
acrylamide �polyNipam� and the shell is poly-N-isopropyl
methacrylamide �polyNipmam� polymer �24–26�. The size
of the particle can be controlled reversibly by tuning the
temperature, which provides a unique way to control the vol-
ume fraction. Compared to the usual thermosensitive
polyNipam system, the size of the core-shell particle varies
more gradually with temperature resulting in a wider tem-
perature range to tune the particle size �5�.

In previous studies �4–6�, we investigated the glass tran-
sition of dense suspensions of these soft particles as well as
the aging in the glassy state using macrorheology. At high
temperatures, the system was liquid like �i.e., the loss modu-
lus was higher than the elastic modulus and the moduli mea-
sured at a certain frequency were age-independent�. In con-
trast, at low temperature, when the particles are swollen, the
elastic modulus is higher than the loss modulus indicating
that the system is solidlike. We also found that both the elas-
tic and the loss modulus depend on the age t of the system;
the mean relaxation time � of the aging suspension scales
with t. However, we were not able to measure directly this
mean relaxation time. Because the relaxation times scale
with the age of the sample, the viscoelastic moduli are a
function of �t in stead of �. The lowest �t at which the
viscoelastic moduli in an oscillatory experiment can be de-
termined, is about � /2, hence the longest detectable relax-
ation time is �max=2t /�. To investigate this age dependence
of the relaxation times and the microscopic dynamics of a
the suspensions near the glass transition, we use in this study
particle tracking microrheology by analyzing the motion of
probe particles added to the suspension.

Qualitatively, similar behavior is observed as in the mac-
rorheology experiments. At low temperatures the ensemble
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averaged mean squared displacement �MSD� of the probe
particles measured over a time interval t− tw �where tw is the
age of the sample at the start of the tracking� is at short times
independent of the tracking time t− tw and diffusive at long
times, i.e., the MSD increases linearly with tracking time.
This indicates a caging-escape behavior typical for glassy
systems. The caging plateau of the MSD vanishes as we
increase the temperature and the MSD becomes diffusive.
We also observe aging in the glassy state �low temperature�
as shown by the increase in the crossover time from caging
to diffusive behavior with increasing waiting time tw. Further
analysis of the distribution of particle displacements indi-
cates that in the glassy state at short tracking times, the dy-
namics is heterogeneous. Using Mason’s approximation �27�
of the generalized Stokes-Einstein relation �28�, we calculate
the elastic and loss modulus from the MSD. With this mi-
crorheology technique, we probe the viscoelastic moduli in a
lower frequency range, that is inaccessible with conventional
macrorheology.

Quantitatively, however, we observe differences between
the macro- and microrheology. To explain these differences
we formulate a simple model for the frequency dependent
drag force on the tracer particles, assuming that each tracer
particle is surrounded by a liquid shell, which has viscoelas-
tic properties that are different from the bulk.

II. METHODS

A. Microgel particle suspension

We use a suspension of thermosensitive core-shell par-
ticles with a polyNipam core and a polyNipmam shell
�24–26�. The particles are swollen at low temperatures, T
�30 °C and collapse at high temperatures, T�45 °C, with
a gentle transition around 35 °C. The radius of gyration,
measured with static light scattering, varies by almost a fac-
tor of 2 in this temperature interval, as shown in Fig. 1. The
suspension was prepared by adding a known amount of sol-
vent �bidistilled water� to the freeze dried particles, resulting
in a mass concentration of 4%w /w at T0=24 °C. Carboxy-
lated polystyrene spheres with a radius of 115 nm, labeled
with fluorescein �excitation wavelength: 490 nm, emission:
540 nm� were dispersed in the suspension to a concentration

of 0.05%w /w. The suspension was stirred over night to mix
it homogeneously. The volume fraction of microgel particles
in the suspension ��T ,c� was determined by measuring the
relative viscosity �r at T0=24 °C as a function of the rela-
tive mass concentration c in the low concentration regime:
c�5	10−5w /w. The ratio � /c was determined by applying
Einstein’s viscosity relation, �r�c�=1+5 /2�, to the mea-
sured viscosities: ��T0 ,c� /c=42
1. For other temperatures,
the value of � was calculated with ��T ,c�
=��T0 ,c��Rg�T� /Rg�T0��3, where the particle gyration radius
Rg�T�, was obtained from Fig. 1. All experiments were per-
formed with volume fractions, as defined in this way, be-
tween 1.1 and 1.6.

B. Particle tracking experiments

To determine the displacement distributions and the
MSDs of the fluorescent tracer particles as a function of
time, we measure their displacements by taking series of
images using a confocal scanning laser microscope �CSLM�
equipped with a 100	 objective and a CCD camera. The
images are stored on disk for further analysis. To perform
these experiments we need only two milliliter of sample,
which is put together with a magnetic stirring bar, in a glass
vial, from which the bottom has been removed, after which it
was glued on to a Delta T culture dish �Bioptechs, Butler,
PA, USA�. Via this dish, the sample temperature is controlled
using the accompanying delta T heater. To prevent sample
evaporation, 1 ml of mineral oil is added on top of the
sample before tightly closing the vial.

The detection limit of the CSLM was determined by mea-
suring the apparent displacement as a function of time of
probe particles glued on the culture dish. They were glued by
adding one drop of the probe suspension �0.01%w /w� and
drying the dish in an oven at 80 °C for about four hours. The
position of the particles was tracked using the CSLM by
taking 2600 images at a rate of 1 frame per second �fps�.
From these measurements the smallest detectable in plane
MSD was found: 5	10−5 �m2.

Before we start a measurement, the sample temperature is
stabilized for about one hour. The surrounding temperature is
kept at the same temperature as the sample using an infrared
lamp. Next, to prepare a well defined initial state, the sample
is stirred manually with the magnetic bar. The age of the
sample is measured from the moment the stirring is stopped.
Since we are interested in the age dependence of the particle
dynamics, we wait a well defined time tw, between 300 and
4500 s, before we start to track the motion of the probe
particles, by recording 2500 images of the sample with a rate
of 1 fps at T=27 °C, and 10 fps at higher temperatures.

The recorded images are analyzed using open source par-
ticle tracking routines written in interactive data language
�IDL� from Research Systems Inc. to locate the position of
the particles in every image �29�. Knowing the particle posi-
tions in each frame, we then construct the particle trajectories
and calculate the ensemble-averaged two-dimensional mean
squared displacements in the focal plane, using routines de-
veloped in the course of this project, that were written in �C�.
Since the sample is also aging during recording, several
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FIG. 1. �Color online� The radius of gyration Rg of a
polyNipam-polyNipmam microgel particle as a function of the tem-
perature T measured with static light scattering. The line is drawn to
guide the eye.
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waiting times can be considered by starting the analysis at a
later recording time. For example, tw=800 s was obtained
by calculating the MSD of the sample with tw=300 s, but
starting the analysis at 501st image, i.e., after an additional
500 s. In order to minimize the contribution of the measure-
ment time t− tw to the age of the sample, we considered only
MSDs for 0� �t− tw� / tw�0.4 for the analysis of the MSD in
the glassy state �27 °C�.

The displacement distributions P�y , t , tw� during a certain
time interval �tw , t� are determined by collecting the number
of occurrences yi�
r�t , tw��yi+1 into bin �yi ,yi+1�. The
number of occurrences in a bin is normalized by the total
number of particles in the distribution times the bin width
yi+1−yi.

C. Microrheology

The motion of the probe particle is determined by the
�local� viscoelastic properties of the system. The relation be-
tween the complex shear modulus G���� and the two-
dimensional mean squared displacement �
r2�t��, is given by
the Generalized Stokes-Einstein Relation �GSER� �28�

G���� = i�G̃�i�� =
2kBT

3�a�i���
r2̃�i���
. �1�

Here, �
r2̃�s�� is the Laplace transform of the MSD �
r2�t��
and G̃�s� the Laplace transform of the viscoelastic relaxation
modulus G�t�, kB is the Boltzmann constant, T is the thermo-
dynamic temperature, a is the radius of the probe particle and
i= �−1�1/2 the imaginary unit. Because in practice, �
r2�t�� is
only known in a limited time regime, it is not possible to
calculate its Laplace transform accurately. Therefore, we use
Mason’s approximation of the GSER �27�

G���� =
2kBT

3�a�
r2�1/���

exp� i�

2
�����

��1 + �����
, �2�

where

���� = �d ln�
r2�t − tw��
d ln�t − tw� �

t−tw=�−1
�3�

is the slope of the log-log plot of �
r2� vs �t− tw� and � is the
so-called gamma function, which for 1�z�2, correspond-
ing to 0���1, is well approximated by: ��z�	0.457z2

−1.36z+1.90. The elastic and the loss modulus, which are
the real and the imaginary part of G����, are given by

G���� =
2kBT

3�a�
r2��−1��
cos������/2�
��1 + �����

, �4�

G���� =
2kBT

3�a�
r2��−1��
sin������/2�
��1 + �����

. �5�

To reduce the uncertainty in the derivatives needed to calcu-
late ����, we approximated the measured MSD curves by an
empirical function f�x�= ��axn�p+ �bxm�p�1/p, where x= t− tw.
The terms axn with n
0+ and bxm with m
1− describe the

short and long time behavior of the curve, while p is a mea-
sure for the smoothness of the transition from short to long
time behavior, which occurs at axn=bxm. The coefficients a,
b, n, m, and p are obtained by fitting f�x� to the experimental
data. The derivatives are calculated by differentiating f�x�.
Finally, the viscoelastic moduli are calculated using Eqs.
�3�–�5�.

D. Macrorheology

For comparison with the microrheology results, we also
measured the macroscopic elastic and loss modulus, G� and
G�, of the suspension in a frequency range of 0.063–6.28
rad/s, using a Haake RS600 rheometer with a cone and plate
geometry �cone angle: 2 degrees, diameter: 60 mm�. A home
built vapor lock was used to avoid evaporation. The tempera-
ture of the shielding was kept approximately 5 °C above the
plate temperature to prevent condensation on it. This was
sufficient to keep the concentration constant for more than a
week. The suspension was injected at about 44 °C �col-
lapsed state� and then the instrument was cooled down to the
experimental temperature. Prior to any oscillatory measure-
ment, the suspension was rejuvenated by a mechanical
quench, i.e., a stress well above the yield stress was applied
for 60 s. The time t=0 is defined at the end of the quench.
The elastic modulus G���� and the loss modulus G���� were
measured at several temperatures T and after different wait-
ing times tw. The age is defined as the total time since the end
of the mechanical quench until the moment of data acquisi-
tion, which includes the waiting time and the oscillation time
so far �4,5�.

III. PARTICLE TRACKING RESULTS

A. Mean square displacements

The two-dimensional mean squared displacements of the
probe particles embedded in a 4%w /w suspension are mea-
sured, at different temperatures, as a function of the tracking
time t− tw after a waiting time tw=300 s. The results are
shown in Fig. 2 using logarithmic scales. The MSD curves
behave almost linearly for T�30 °C, indicating the liquid
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FIG. 2. �Color online� The mean squared displacement �
r2� of
the probe particles measured for c=4%w /w at different tempera-
tures �from top to bottom 32 °C, 31 °C, 30 °C, and 27 °C, with
�=1.18, 1.28, 1.37, and 1.56, respectively� and tw=300 s. The
open squares indicate the detection limit of our CSLM setup.

AGING IN DENSE SUSPENSIONS OF SOFT… PHYSICAL REVIEW E 81, 011404 �2010�

011404-3



like behavior of the suspension at these temperatures. For
T�30 °C, the curves show a transition from liquid like to
glassy, reflected by the onset of a plateau at short times.
Moreover, the curves shift downwards as the temperature
decreases. Note that the MSDs measured at different tem-
peratures are well above the detection limit, 5	10−5 �m2

that was determined from the apparent MSD of probe par-
ticles glued to the culture dish �the lowest curve in Fig. 2�.

At 32 °C, the MSD increases linearly with tracking time
as indicated by the slope of the �
r2�t− tw�� curve, which is
close to one, whereas at lower temperature �30 °C and
31 °C� the slope for t− tw�2 s is smaller than unity, tending
to unity at longer tracking times. At 27 °C, the MSD curve
shows a plateau at short tracking times �t− tw�10 s� while it
increases linearly with the tracking time for t− tw�20 s. At
long tracking times, the behavior of the MSD curves is dif-
fusive in all cases and the suspension behaves liquidlike. In
this regime, the diffusivity goes down with decreasing tem-
perature. This decrease is determined by the low frequency
viscosity �0� of the suspension, �
r2� / �t− tw�
2kBT /3�a�0�,
which increases with decreasing temperature due to the in-
creasing volume fraction. A similar behavior of the mean
square displacement has been found in molecular dynamic
simulations of dense suspensions of star polymers. However,
for star polymers the size of the particles increases as the
temperature increases �30�.

At temperatures below 30 °C and short tracking times,
subdiffusive behavior is observed, i.e., the slope of the
ln�
r2� vs ln�t− tw� curve is lower than one. This reflects the
onset of elastic behavior �27�, which is most pronounced at
27 °C. Here, the MSD shows a plateau at short time scales
because the particles are trapped within a cage formed by
their neighboring particles, and the system behaves elasti-
cally. The relation between the elastic modulus, G�� , and the
plateau value of the MSD, �
r2�p is given by G��

�2kBT /3�a�	 �1 / �
r2�p�.

To identify the transition from the �nonaging� liquid to the
�aging� glassy state, we measure the MSD curves at 31 °C
and 30 °C, at two different waiting times �tw=300 and 3000
s�. The results are given in Fig. 3. The MSDs measured at
both temperatures look quite similar. But at 31 °C, we ob-
serve no significant difference �considering the reproducibil-
ity of the MSD measurements� between the curves measured

at tw=300 s and tw=3000 s, while at 30 °C, the MSD does
depend on the waiting time. Hence, the transition tempera-
ture Tg of the 4%w /w suspension lies between 30 °C and
31 °C This is in agreement with our previous observations
where we found for c=4%w /w: Tg=29 °C, see Fig. 3 of �6�.

The dependence of the MSD curves on the waiting time
becomes more pronounced at lower temperatures, where the
volume fraction of the system is larger. Therefore, we re-
duced the temperature to 27 °C and measured the ensemble
averaged MSD as a function of the tracking time for eight
different waiting times between 300 and 4500 s. The results
are given in Fig. 4�a�. The figure shows clearly the evolution
of the MSD with increasing waiting time tw: the transition
from the short time plateau to the long time diffusive growth
of the MSD, characterized by the crossover time �, shifts
towards longer times, while the plateau values themselves
slightly decrease with increasing tw. This result strongly in-
dicates the aging of the system. In Fig. 4�b�, we scale the
results by normalizing the MSD with its plateau value
�
r2�p, and plotting them as function of �t− tw� /�. The cross-
over time � is determined from the transition from the pla-
teau to the diffusive part of the MSD, using the coefficients
of the empirical fit function mentioned in Sec. II C: a�n

=b�m. The inset of Fig. 4�b� shows the crossover time � as a
function of the waiting time tw. A linear fit to these data
points results in: � / tw=0.090
0.005: the crossover time in-
creases linearly with the age of the suspension.
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FIG. 3. �Color online� The MSD �
r2� as a function of time at
30 °C ��, �=1.37� and 31 °C ��, �=1.28� measured after tw

=300 s �open symbols� and tw=3000 s �filled symbols�.
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FIG. 4. �Color online� Panel a: the MSD �c=4%w /w and T
=27 °C, �=1.56� measured at several waiting times �300 s �filled
��, 800 s �filled ��, 1300 s �filled ��, 1800 s �filled ��, 3000 s
�filled ��, 3500 s �open ��, 4000 s �open ��, and 4500 s �open
���. Panel b: the same data but the MSDs and t− tw have been
normalized with �
r2�p and the crossover time �, respectively. Inset:
� as a function of the waiting time tw in units of 1000 s.
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B. Displacement distributions

Analyzing the particle trajectories we also constructed the
displacement distributions P�
x ; t , tw� and P�
y ; t , tw�,
where 
x=x�t�−x�tw� �
y=y�t�−y�tw�� is the displacement
in the focal plane in x �y� direction. Figure 5�a� shows the
displacement distribution of the probe particles P�
y ; t , tw�
at 31 °C and 32 °C, when the system is in the liquid state,
taken at tw=300 s and 
t= t− tw=10 s. At these tempera-
tures, the distributions are Gaussian, i.e., P�
y��exp�
−
y2 /2�
y2��, as expected for a liquid. The displacement
distribution at 32 °C is broader than the one at 31 °C, be-
cause the probe particles have a higher diffusivity at 32 °C,
as shown in Fig. 2. This is due to a lower viscosity. The
viscosities at 32 °C and 31 °C, calculated using Stokes-
Einstein relation: �
�2kBT /3�a�	 ��t− tw� / �
r2��, are 0.2
Pas and 1.2 Pas, respectively.

The displacement distributions presented in Fig. 5�a� in-
clude all the probe particles in the observation window. Ev-
ery probe particle explores randomly its local environment
resulting in a Gaussian displacement distribution. Averaging
over all the particles will reveal the homogeneity of the
sample, since any spatial inhomogeneity will lead to a non-
Gaussian displacement distribution. On the other hand, a
Gaussian distribution shows that the sample is homogeneous,
at least on the length scale of the observation window.

Figure 5�b� shows the displacement distribution of the
probe particles when the suspension is in the glassy state
�tw=300 s�, at 30 °C just below the glass transition and at
27 °C deeper in the glassy state. The distribution at 30 °C is
broader than the one at 27 °C where the system is more

arrested and the probe particles have less freedom to move.
In contrast to the distributions in the liquid state, these dis-
tributions are non-Gaussian and can be described by a double
Gaussian as shown by the solid line in Fig. 5�b�. The two
underlying Gaussian distributions are indicated by the
dashed lines. The non-Gaussian behavior observed in the
glassy state indicates a dynamic inhomogeneity as we per-
form ensemble averaging only �1,7�, so all particles have the
same age. The double Gaussian observed in Fig. 5�b�, sug-
gests that in the glassy state, two populations of particles
exist with different dynamic behavior. The broader Gaussian
distribution represents the mobile population, whereas the
less mobile population is represented by the more narrow
Gaussian.

In Fig. 5�c�, we consider the suspension at 27 °C and tw
=300 s. The displacement distributions are taken at two dif-
ferent tracking times: t− tw=10 and 100 s. At t− tw=10 s, the
particles are caged by the neighboring particles as indicated
by the almost constant �
r2� shown in Fig. 4�a�, whereas at
t− tw=100 s, the particles behave diffusive. The distribution
is broader at longer t− tw as also indicated by the increase in
its MSD shown in Fig. 2. The displacement in the caged part
�t− tw=10 s� can be well described with a double Gaussian,
whereas a single Gaussian is sufficient to describe the distri-
bution at t− tw=100 s.

To investigate how this distribution of the displacement
evolves as function of t− tw, we quantify the deviation from a
Gaussian distribution by calculating the non-Gaussian pa-
rameter �1�: �2= 1

3 �
r4�t− tw�� / �
r2�t− tw��2−1. Figure 6
shows �2 for the 4%w /w microgel suspension at different
temperatures. The analysis is done at tw=300 s. At high tem-
perature �31 °C and 32 °C�, the �2 is zero for all observed
time scales. However, at low temperatures �27 °C and
30 °C�, the non-Gaussian parameter is larger than zero at
short time scales and decreases to zero at longer time scales.
We also observe that the non-Gaussian parameter reduces to
zero within a relatively short time �t− tw�1 s� at 30 °C
while at 27 °C, it takes about 100 s. Figure 6 indicates that
�2 is nonzero when the particles are caged and reduces to
zero once the particles escape from the cage. This evolution
of the displacement probability from non-Gaussian at short
times to Gaussian at long times is not in agreement with a
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FIG. 5. �Color online� Panel a: the displacement probability
�P�
y�� at 31 °C ��, �=1.28� and 32 °C ��, �=1.18� taken at
tw=300 s and t− tw=10 s and compared to Gaussian fits �lines�.
Panel b: P�
y� at 27 °C ��, �=1.56� and 30 °C ��, �=1.37�
taken at tw=300 s and t− tw=10 s and compared to a double
Gaussian �lines�. The dotted lines indicate the mobile and immobile
populations. Panel c: �P�
y�� at 27 °C ��=1.56� taken at tw

=300 s and t− tw=10 s �closed symbols� and t− tw=100 s �open
symbols�. At t− tw=10 s, P�
y� is well described with a double
Gaussian while at t− tw=100 s, can be described with one
Gaussian.
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FIG. 6. �Color online�. The non-Gaussian parameter �2 �tw

=300 s� at several temperatures: 27 °C ��, �=1.56�, 30 °C ��,
�=1.37�, 31 °C ��, �=1.28�, and 32 °C �� , �=1.18�.
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recent theory developed based on a single Brownian particle
moving in a periodic effective field �31�, which describes the
caging and subsequent cage escape. This theory correctly
predicts the Gaussian displacement distribution in the diffu-
sive region of the MSD curve. However, it predicts also
Gaussian behavior at the plateau region of the MSD, only
near the transition the model predicts a non-Gaussian distri-
bution, resulting in a maximum in the �2 vs t− tw curve.
Because we do observe non-Gaussian behavior at the plateau
region, which cannot be attributed to the caging effect, as
�31� suggests, we conclude this is most probably due to spa-
tial inhomogeneity of the sample.

C. Microrheology

To convert the data from Fig. 4 to the viscoelastic moduli
G� and G�, we determine ����, Eq. �3�, for every MSD
curve as described in Sec. II C and calculate the moduli us-
ing Eq. �4� and �5�. The results are shown in Fig. 7, where G�
and G�, both scaled on G�� , have been plotted vs ��, with �
the crossover time from Fig. 4. All G� and G� curves col-
lapse to a master curve. The full lines in the figure represent
a Maxwell fluid which has only one relaxation time. As the
crossing of G� and G� occurs at ��=1, we identify the cross-
over as the mean relaxation time of the suspension. Hence,
the mean relaxation time depends linearly on the age of the
system: �=0.1 tw. The relaxation time obtained for tw
=4500 s, shown in the inset of Fig. 4�b�, seems to be smaller
than expected from the linear dependence. However, earlier
macrorheology measurements on the same system at T
=20 °C show that the relaxation times scale with age at least
up to t=30 000 s, see Fig. 4�a� of �6�. From the behavior of
G� at ��
10 we observe that G� deviates from Maxwellian
behavior for short waiting times. The deviation becomes
smaller with increasing waiting time. This indicates that at
short waiting times additional relaxation times exist, shorter
than the dominant relaxation time, which disappear with in-
creasing waiting time. Moreover, the low frequency behavior
of G� �as well as the high frequency behavior of G� at long
waiting times� is steeper than prescribed by linear viscoelas-
tic theory. This is most probably due to the limitations of the

Mason approximation �27�, used to calculate the viscoelastic
moduli.

IV. MICRO- VS MACRORHEOLOGY

A. Macroscopic viscoelastic moduli

For comparison with the microrheology results, we also
measured the macroscopic viscoelastic moduli, G� and G�,
of the suspension in a frequency range of 0.062–6.28 rad/s,
as described before in �5�. Figure 8 shows the elastic and the
loss modulus of the 4%w /w suspension measured at 32 °C
and 27 °C, after several waiting times. From Fig. 8�a�, we
observe that at 32 °C, corresponding with a volume fraction
�=1.18, the loss modulus is larger than the elastic modulus
for most frequencies and only at frequencies higher than 3
rad/s the elastic modulus is larger than the loss modulus. The
moduli are age-independent at this temperature as indicated
by the collapse of the moduli measured at different waiting
times. Figure 8�b� shows that at 27 °C, corresponding with
�=1.56, the elastic modulus G� is almost constant and sig-
nificantly larger than the loss modulus G� for all applied
frequencies. Moreover, at 27 °C the moduli depend on the
age of the suspension. G� and G� form a master curve for
�t�200 when they are plotted as function of �t. Here, t is
the age of the sample at the moment of measuring the con-
sidered data point. For �t�200, the loss moduli G���t� do
not collapse to a single curve anymore. This is due to the
dominance of local viscous and Brownian contributions,
which are age-independent �4,5�.

The transition from nonaging viscous behavior at high
temperature �Fig. 8�a�� to aging elastic behavior at low tem-
perature �Fig. 8�b�� again shows that the system undergoes a
transition from liquid to glassy as we increase the volume
fraction by decreasing the temperature. However, in this
case, we cannot determine the mean relaxation time �, due to
the limited experimental �t window. By quantitatively com-
paring the viscoelastic moduli with the predictions of the soft
glassy rheology �SGR� model as indicated by the lines in
Fig. 8 �see �14–16� for details�, we found that the system is
in the liquid state at 32 °C with an effective noise tempera-
ture well above one: x�3. On the other hand, at 27 °C, we
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FIG. 7. �Color online� The normalized G� �open symbols� and
the G� �filled symbols� of a 4%w /w suspension �T=27 °C, �
=1.56� at several waiting times �300 s ���, 800 s ���, 1300 s ���,
1800 s ���, 3000 s ���, 3500 s ���, 4000 s ���, and 4500 s ����
calculated from Fig. 4, using Mason’s approximation of the Gener-
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FIG. 8. �Color online� Elastic �filled symbols� and loss modulus
�open symbols� measured at 32 °C �a� and 27 °C �b� corresponding
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obtain an effective noise temperature well below one: x
=0.5, which means that the system is in the glassy state and
ages. Also, according to the SGR model G� in the glassy
state is a function of �t. This implies that all the underlaying
relaxation times scale with the age of the system. So, the
observed scaling of the mean relaxation time in Fig. 4�b� is
qualitatively in agreement with the predictions of the SGR
model.

To compare the macro- and microrheology directly, we
plot in Fig. 9 the macroscopic �red circles� and local micro-
scopic �blue triangles� G� and G�, both measured at 27 °C
and after waiting a time tw=1300 s. With Mason’s approach,
one �measures� the moduli in the frequency range between
�min=1 /
tmax and �max=1 /
tmin where 
t= t− tw is the
tracking time. In this range, the crossing of G� and G�, inac-
cessible in macrorheological measurements, is observed. Al-
though both sets of curves show globally the same behavior,
there are significant differences. The G� obtained from mac-
rorheology is a factor 1.8 larger than the G� from microrhe-
ology. Moreover, the slopes of both G� curves in the over-
lapping frequency range do not match indicating a shift in
the relaxation time: �macro /�micro	5. These differences occur
because the probe particles feel their local environment. The
properties of this environment will differ from the macro-
scopic bulk properties �32�. In the next section, we try to
quantify this effect.

Another explanation found in literature �33� for the lower
moduli measured using particle tracking is the possible exis-
tence of an effective temperature, which should be about two
times the thermodynamic temperature. In this picture, the
macrorheology measurement is considered as the response of
the system to an external force �equivalent with probing mo-
bility� and the microrheology is obtained from the displace-
ments of the probe particles embedded in the system �prob-
ing diffusivity�. But this cannot explain the rather large shift
in the mean relaxation time.

B. Local drag force on a tracer particle

The size of the tracer particle is of the order of the micro-
gel particles. In that case, one may expect that the tracer

probes an environment, where the viscoelasticity is deter-
mined by the local polymer concentration near the surface of
the microgel particle. This concentration can be considerably
lower than at the core of such a microgel particle �34,35�.
Hence, the local elasticity and viscosity are expected to be
much smaller than the bulk values. To investigate this effect,
we model the local environment as a spherical shell with
radius b around the probe particle with radius a �see Fig. 10�.
This shell has a complex viscosity �shell

� , which is different
from the bulk. Outside the shell, we assume the macroscopic
viscoelasticity G����= i������. For this situation, the drag
force Fd on a stationary tracer particle in the frequency do-
main is not simply given by Fd���=6�a�����U��� where U
is the fluid velocity far from the tracer, but will also be in-
fluenced by the viscoelastic shell around the tracer. We cal-
culate the modified drag force by considering a stationary
particle, surrounded by a viscoelastic shell �region 1�, in a
viscoelastic medium �region 2� that moves with velocity
U���. As described in the supplementary information �36�,
we ignore inertia and solve the Stokes equations with the
appropriate boundary conditions �37�

� · u� = 0, � p = ���2u� ,

where u� is the velocity field, p the pressure field, and �� the
complex viscosity in the considered region. The boundary
conditions far away from the particle in region 2 are given by
the applied velocity field

ur
�2��r,�� = U cos �, u�

�2��r,�� = − U sin � , �6�

while at the particle surface in region 1, i.e., r=a, the veloc-
ity components should be zero

ur
�1��r,�� = u�

�1��r,�� = 0,

and at the boundary between region 1 and 2, i.e., r=b, the
velocities and tractions should be continuous

ur
�1��r,�� = ur

�2��r,��, Trr
�1� = Trr

�2�,

u�
�1��r,�� = u�

�2��r,��, Tr�
�1� = Tr�

�2�,

Having solved the velocity and pressure field, we integrate
the resulting stresses Trr

�1� and Tr�
�1� over the surface of the

tracer particle to find the drag force on the tracer

Fd��� = 6�aQ��,��/�shell
� ������U��� ,

where �=b /a is the relative outer radius of the shell sur-
rounding the tracer. The function Q�� ,�r� is defined as
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FIG. 9. �Color online� Comparison between the macro-��� and
microrheology ��� at T=27 °C ��=1.56� and tw=1300 s. The
open �filled� symbols represent the measured G� �G�� values. The
blue dashed curves are the results of the calculation, described in
Sec. IV B, using the analytic representation of the macro results
�full red lines� as input.
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FIG. 10. Cell model to calculate the drag force Fd on the probe
particle with radius a, due to an oscillating velocity field U. The
surrounding shell, with viscosity �shell

� , has a radius b ��=b /a�.
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Q��,�r� =
A0��� + �rA1���

B0��� + �rB1��� + �r
2B2���

, �7�

with

A0��� = 6�6 + 4� ,

A1��� = 4�6 − 4� ,

B0��� = 6�5 + 4,

B1��� = 6�6 + 3�5 − 10�3 + 9� − 8,

B2��� = 4�6 − 9�5 + 10�3 − 9� + 4. �8�

Note that both Q�1,�r�=1 and Q�� ,1�=1, as expected.
Once this force is known, we can write the local viscoelas-
ticity felt by the tracer particle as 6�a�pt

� ���U���
=6�aQ�� ,�� /�shell

� � �����U��� or

Gpt
� ��� = Q��,��/�shell

� �G���� . �9�

In Fig. 9, we compare the measured Gpt
� ��� with those cal-

culated from G���� using last equation �blue solid line�.
Since the segment density profile of the microgel particles,
as investigated previously �24�, show a smooth decay at the
particle surface, the crosslink density at the microgel surface
is very low. Hence, the microgel surface is dominated by the
dangling chains and thus should reveal mainly viscous prop-
erties. We therefore assume �shell

� =��� . The parameter � was
used as a fitting coefficient. The best match was found for
�=1.05. For this value, we obtain G���� /Gpt

� ���
1.6 and
�macro /�micro
5, which is qualitatively in agreement with the
experimental observation. Although the model is very simple
and certainly not adequate to describe all details, it clearly
shows that a small depletion region around the tracer particle
already causes a drastic change in its mobility.

V. CONCLUSION

With our thermosensitive system, we can tune the system
from the liquid to the glassy state reversibly by changing the

temperature. The volume fraction of the system increases as
we decrease the temperature due to the swelling of the core-
shell particles. The viscoelastic moduli obtained from mac-
rorheology evolve from a viscous behavior to an elastic be-
havior as we decrease the temperature. Meanwhile, the mean
squared displacement obtained from the particle tracking ex-
periments evolves from a diffusive at high temperature to a
caging-diffusive behavior at low temperature. In the glassy
state �at low temperature�, the system shows aging as indi-
cated by the age-dependent behavior of the viscoelastic
moduli obtained from macrorheology and the MSD curves
obtained from the particle tracking. With this particle track-
ing technique, we are able to measure directly the mean re-
laxation time of an aging suspension. The relaxation time
extracted from these measurements increases linearly with
the waiting time, i.e., the age of the sample, and is qualita-
tively in agreement with the indirect macrorheological obser-
vation that the moduli measured at different ages form a
master curve when plotted as function of �t in stead of �,
implying a linear increase in the relaxation times with age t.

Investigation of the displacement distributions indicates
that in the glassy state, the particle dynamics is non-Gaussian
at short tracking times but becomes Gaussian at longer times.
The non-Gaussian behavior indicates that the particle dis-
placements are inhomogeneous. At short tracking times, we
identify in the glassy state mobile and immobile particle
populations.

Using Mason’s approximation of the generalized Stoke-
Einstein relation, we calculate the viscoelastic moduli from
the measured MSDs. Comparing the macro- and microrheol-
ogy quantitatively, we observe a shift both in the elastic pla-
teau and the mean relaxation time, which we can explain by
a simple model calculation that takes into account the local
inhomogeneity of the sample around the tracer particle.
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